DSM/ECU: Difference between revisions

From Jane Hacker Wiki
Jump to navigation Jump to search
Line 63: Line 63:
** tasm6111.tab
** tasm6111.tab
** standard_E932.lst
** standard_E932.lst
** <pre>
ThisisthesymbolicandcommentedsourcecodefortheDSME931andE932ECU.Toassemble"standard_E932_E931_source.asm",downloadthetelemarkassemblerTASMfromhttp://home.comcast.net/~tasm/tothesamedirectoryandexecuteasm.batfromtheDOSprompt.Theassemblerwillproducetwofiles:standard_E932_E931_source.lstisalinebylinelistingoftheassemblywithaddresseswhilestandard_E932_E931_source.objisthe32KBbinaryimagetoburnonEPROM.DefaultsettingproducestheE931standardbinaryimageRequiredfile,notprovided(fromhttp://home.comcast.net/~tasm/):TASM.EXE,Version3.2Contents:standard_E932_E931_source.asmAssemblysourcefilefortheE931/E932.Seenotesatthebeginningofthatfileformoredetails.DefaultsettingproducesthestandardE931EPROMimage.asm.batBatchfiletoassemblestandard_E932_E931_source.asmstandard_E931.binBinaryfilereadfromanactualE931EPROM.Assemblyofstandard_E932_E931_source.asmusingthe"E931"settingshouldproduceanidenticalbinary.standard_E932.binBinaryfilereadfromanactualE932EPROM.Assemblyofstandard_E932_E931_source.asmusingthe"E932"settingshouldproduceanidenticalbinary.standard_E931.lstAssemblylistingfileforthestandardE931,usefullifyoujustwanttoeditanEPROMimagewithoutassembly..standard_E932.lstAssemblylistingfileforthestandardE932,usefullifyoujustwanttoeditanEPROMimagewithoutassembly..tasm6111.tabTASMcompatibleopcodesfortheE931/E932ECUs.Workswiththeprovidedsourcefiles.Mightbeincompleteifyouwanttousesomethingnotalreadyusedbythestandard[email protected]
<\pre>
* http://www.bcdsm.org/forum/index.php?topic=11843.0
* http://www.bcdsm.org/forum/index.php?topic=11843.0
** https://web.archive.org/web/20050301180032/http://www.ece.ubc.ca/~elec259/Static/datasheets/M68HC11RM.pdf
** https://web.archive.org/web/20050301180032/http://www.ece.ubc.ca/~elec259/Static/datasheets/M68HC11RM.pdf

Revision as of 12:10, 1 May 2021

General

- https://web.archive.org/web/20050427181808/http://dsm-ecu.com/

ECU troubleshooting and daughterboard [RUS]

ECU numbers

EPROM images

Editing notes

E931 disassembly with comments

More decompile

http://www.ceddy.us/

Processor info

Docs

ThisisthesymbolicandcommentedsourcecodefortheDSME931andE932ECU.Toassemble"standard_E932_E931_source.asm",downloadthetelemarkassemblerTASMfromhttp://home.comcast.net/~tasm/tothesamedirectoryandexecuteasm.batfromtheDOSprompt.Theassemblerwillproducetwofiles:standard_E932_E931_source.lstisalinebylinelistingoftheassemblywithaddresseswhilestandard_E932_E931_source.objisthe32KBbinaryimagetoburnonEPROM.DefaultsettingproducestheE931standardbinaryimageRequiredfile,notprovided(fromhttp://home.comcast.net/~tasm/):TASM.EXE,Version3.2Contents:standard_E932_E931_source.asmAssemblysourcefilefortheE931/E932.Seenotesatthebeginningofthatfileformoredetails.DefaultsettingproducesthestandardE931EPROMimage.asm.batBatchfiletoassemblestandard_E932_E931_source.asmstandard_E931.binBinaryfilereadfromanactualE931EPROM.Assemblyofstandard_E932_E931_source.asmusingthe"E931"settingshouldproduceanidenticalbinary.standard_E932.binBinaryfilereadfromanactualE932EPROM.Assemblyofstandard_E932_E931_source.asmusingthe"E932"settingshouldproduceanidenticalbinary.standard_E931.lstAssemblylistingfileforthestandardE931,usefullifyoujustwanttoeditanEPROMimagewithoutassembly..standard_E932.lstAssemblylistingfileforthestandardE932,usefullifyoujustwanttoeditanEPROMimagewithoutassembly..tasm6111.tabTASMcompatibleopcodesfortheE931/E932ECUs.Workswiththeprovidedsourcefiles.Mightbeincompleteifyouwanttousesomethingnotalreadyusedbythestandard[email protected] <\pre> * http://www.bcdsm.org/forum/index.php?topic=11843.0 ** https://web.archive.org/web/20050301180032/http://www.ece.ubc.ca/~elec259/Static/datasheets/M68HC11RM.pdf ** https://web.archive.org/web/20091104122431/http://courses.ece.ubc.ca/259/Static/datasheets/InstructionSet.pdf ===MH6111 Instruction Set=== * https://www.scribd.com/doc/293622595/MH6111-OPCODES-1 ===MH6211 Instruction Set=== {| class="wikitable" !|Bytes !|Code !|A !|B !|Desc |- |00||TEST||1||*||TEST OPERATION TEST MODE ONLY |- |00||TEST||1||*||TEST OPERATION TEST MODE ONLY |- |01||NOP||1||2||NO OPERATION |- |02||AIM DIR||3||?||AND IN MEMORY |- |03||OIM DIR||3||?||OR IN MEMORY |- |04||LSRD||1||3||LOGICAL SHIFT RIGHT DOUBLE ACCUMULATOR |- |05||ASLD / LSLD||1||3||ARITHMETIC / LOGICAL SHIFT LEFT DOUBLE ACC |- |06||TAP||1||2||TRANSFER FROM ACC A TO CONDITION CODE REGISTER |- |07||TPA||1||2||TRANSFER FROM CONDITION CODE REGISTER TO ACC A |- |08||INX||1||3||INCREMENT INDEX REGISTER X |- |09||DEX||1||3||DECREMENT INDEX REGISTER X |- |0A||CLV||1||2||CLEAR TWOS COMPLEMENT OVERFLOW BIT |- |0B||SEV||1||2||SET TWOS COMPLEMENT OVERFLOW BIT |- |0C||CLC||1||2||CLEAR CARRY |- |0D||SEC||1||2||SET CARRY |- |0E||CLI||1||2||CLEAR INTERRUPT MASK |- |0F||SEI||1||2||SET INTERRUPT MASK |- |10||SBA||1||2||SUBTRACT ACCUMULATORS |- |11||CBA||1||2||COMPARE ACCUMULATORS |- |14||IDIV DIR ||2||6||INTEGER DIVIDE |- |15||FDIV DIR ||2||6||FRACTIONAL DIVIDE (b = D/M, > a = D%M) |- |16||TAB||1||2||TRANSFER ACCUMULATOR A TO ACCUMULATOR B |- |17||TBA||1||2||TRANSFER FROM ACCUMULATOR B TO ACCUMULATOR A |- |18||XGXY||1||4||EXCHANGE REGISTER X AND REGISTER Y |- |19||DAA||1||2||DECIMAL ADJUST ACCUMULATOR A |- |1A||XGDX||1||||EXCHANGE DOUBLE ACCUMLATOR AND INDEX REG X |- |1B||ABA||1||2||ADD ACCUMULATOR B TO ACCUMULATOR A |- |1C||CPD IMM||3||5||COMPARE DOUBLE ACCUMULATOR |- |1D||CPD DIR||2||6||COMPARE DOUBLE ACCUMULATOR |- |1F||CPD EXT||3||7||COMPARE DOUBLE ACCUMULATOR |- |20||BRA||2||3||BRANCH ALWAYS |- |21||BRN||2||3||BRANCH NEVER |- |22||BHI||2||3||BRANCH IF HIGHER |- |23||BLS||2||3||BRANCH IF LOWER OR SAME |- |24||BCC / BHS||2||3||BRANCH IF CARRY CLR / BRANCH IF HIGHER OR SAME |- |25||BCS / BLO||2||3||BRANCH IF CARRY SET / BRANCH IF LOWER |- |26||BNE||2||3||BRANCH IF NOT EQUAL TO ZERO |- |27||BEQ||2||3||BRANCH IF EQUAL |- |28||BVC||2||3||BRANCH IF OVERFLOW CLEAR |- |29||BVS||2||3||BRANCH IF OVERFLOW SET |- |2A||BPL||2||3||BRANCH IF PLUS |- |2B||BMI||2||3||BRANCH IF MINUS |- |2C||BGE||2||3||BRANCH IF GREATER THAN OR EQUAL TO ZERO |- |2D||BLT||2||3||BRANCH IF LESS THAN ZERO |- |2E||BGT||2||3||BRANCH IF GREATER THAN ZERO |- |2F||BLE||2||3||BRANCH IF LESS THAN OR EQUAL TO ZERO |- |30||TSX||1||3||TRANSFER FROM STACK POINTER TO INDEX REGISTER X |- |31||INS||1||3||INCREMENT STACK POINTER |- |32||PULA||1||4||PULL DATA FROM STACK |- |33||PULB||1||4||PULL DATA FROM STACK |- |34||DES||1||3||DECREMENT STACK POINTER |- |35||TXS||1||3||TRANSFER FROM INDEX REGISTER X TO STACK POINTER |- |36||PSHA||1||3||PUSH DATA ONTO STACK |- |37||PSHB||1||3||PUSH DATA ONTO STACK |- |38||PULX||1||5||PULL INDEX REGISTER X FROM STACK |- |39||RTS||1||5||RETURN FROM SUBROUTINE |- |3A||ABX||1||3||ADD ACCUMULATOR B TO INDEX REGISTER X |- |3B||RTI||1||12||RETURN FROM INTERRUPT |- |3C||PSHX||1||4||PUSH INDEX REGISTER X ONTO STACK |- |3D||MUL||1||10||MULTIPLY UNSIGNED |- |3E||WAI||1||14||WAIT FOR INTERRUPT |- |3F||SWI||1||14||SOFTWARE INTERRUPT |- |40||NEGA||1||2||NEGATE |- |43||COMA||1||2||COMPLEMENT |- |44||LSRA||1||2||LOGICAL SHIFT RIGHT |- |46||RORA||1||2||ROTATE RIGHT |- |47||ASRA||1||2||ARITHMETIC SHIFT RIGHT |- |48||ASLA / LSLA||1||2||ARITHMETIC / LOGICAL SHIFT LEFT |- |49||ROLA||1||2||ROTATE LEFT |- |4A||DECA||1||2||DECREMENT |- |4C||INCA||1||2||INCREMENT |- |4D||TSTA||1||2||TEST |- |4F||CLRA||1||2||CLEAR |- |50||NEGB||1||2||NEGATE |- |53||COMB||1||2||COMPLEMENT |- |54||LSRB||1||2||LOGICAL SHIFT RIGHT |- |56||RORB||1||2||ROTATE RIGHT |- |57||ASRB||1||2||ARITHMETIC SHIFT RIGHT |- |58||ASLB / LSLB||1 ||2||ARITHMETIC / LOGICAL SHIFT LEFT |- |59||ROLB||1||2||ROTATE LEFT |- |5A||DECB||1||2||DECREMENT |- |5C||INCB||1||2||INCREMENT |- |5D||TSTB||1||2||TEST |- |5F||CLRB||1||2||CLEAR |- |60||NEG IND,X||2||6||NEGATE |- |63||COM IND,X||2||6||COMPLEMENT |- |64||LSR IND,X||2||6||LOGICAL SHIFT RIGHT |- |66||ROR IND,X||2||6||ROTATE RIGHT |- |67||ASR IND,X||2||6||ARITHMETIC SHIFT RIGHT |- |68||ASL / LSL IND,X||2 ||6||ARITHMETIC / LOGICAL SHIFT LEFT |- |69||ROL IND,X||2||6||ROTATE LEFT |- |6A||DEC IND,X||2||6||DECREMENT |- |6C||INC IND,X||2||6||INCREMENT |- |6D||TST IND,X||2||6||TEST |- |6E||JMP IND,X||2||3||JUMP |- |6F||CLR IND,X||2||6||CLEAR |- |70||NEG EXT||3||6||NEGATE |- |73||COM EXT||3||6||COMPLEMENT |- |74||LSR EXT||3||6||LOGICAL SHIFT RIGHT |- |76||ROR EXT||3||6||ROTATE RIGHT |- |77||ASR EXT||3||6||ARITHMETIC SHIFT RIGHT |- |78||ASL / LSL EXT||3 ||6||ARITHMETIC / LOGICAL SHIFT LEFT |- |79||ROL EXT||3||6||ROTATE LEFT |- |7A||DEC EXT||3||6||DECREMENT |- |7C||INC EXT||3||6||INCREMENT |- |7D||TST EXT||3||6||TEST |- |7E||JMP EXT||3||3||JUMP |- |7F||CLR EXT||3||6||CLEAR |- |80||SUBA IMM||2||2||SUBTRACT |- |81||CMPA IMM||2||2||COMPARE |- |82||SBCA IMM||2||2||SUBTRACT WITH CARRY |- |83||SUBD IMM||3||4||SUBTRACT DOUBLE ACCUMULATOR |- |84||ANDA IMM||2||2||LOGICAL AND |- |85||BITA IMM||2||2||BIT TEST |- |86||LDAA IMM||2||2||LOAD ACCUMULATOR |- |87||BRSET DIR||4||||BRANCH IF BIT(S) ARE SET |- |88||EORA IMM||2||2||EXCLUSIVE OR |- |89||ADCA IMM||2||2||ADD WITH CARRY |- |8A||ORAA IMM||2||2||INCLUSIVE OR |- |8B||ADDA IMM||2||2||ADD WITHOUT CARRY |- |8C||CPX IMM||3||4||COMPARE INDEX REGISTER X |- |8D||BSR||2||6||BRANCH TO SUBROUTINE |- |8E||LDS IMM||3||3||LOAD STACK POINTER |- |8F||BRCLR DIR||4||||BRANCH IF BIT(S) ARE CLEAR |- |90||SUBA DIR||2||3||SUBTRACT |- |91||CMPA DIR||2||3||COMPARE |- |92||SBCA DIR||2||3||SUBTRACT WITH CARRY |- |93||SUBD DIR||2||5||SUBTRACT DOUBLE ACCUMULATOR |- |94||ANDA DIR||2||3||LOGICAL AND |- |95||BITA DIR||2||3||BIT TEST |- |96||LDAA DIR||2||3||LOAD ACCUMULATOR |- |97||STAA DIR||2||3||STORE ACCUMULATOR |- |98||EORA DIR||2||3||EXCLUSIVE OR |- |99||ADCA DIR||2||3||ADD WITH CARRY |- |9A||ORAA DIR||2||3||INCLUSIVE OR |- |9B||ADDA DIR||2||3||ADD WITHOUT CARRY |- |9C||CPX DIR||2||5||COMPARE INDEX REGISTER X |- |9D||JSR DIR||2||5||JUMP TO SUBROUTINE |- |9E||LDS DIR||2||4||LOAD STACK POINTER |- |9F||STS DIR||2||4||STORE STACK POINTER |- |A0||SUBA IND,X||2||4||SUBTRACT |- |A0 80 ||SUBA IND,Y||2||||SUBTRACT |- |A1||CMPA IND,X||2||4||COMPARE |- |A1 80 ||CMPA IND,Y+||2||||COMPARE WITH/Y+ |- |A2||SBCA IND,X||2||4||SUBTRACT WITH CARRY |- |A2 80||SBCA IND,Y||2||||SUBTRACT WITH CARRY |- |A3||SUBD IND,X||2||6||SUBTRACT DOUBLE ACCUMULATOR |- |A3 80||SUBD IND,Y||2||6||SUBTRACT DOUBLE ACCUMULATOR |- |A4||ANDA IND,X||2||4||LOGICAL AND |- |A4 80||ANDA IND,Y||2||4||LOGICAL AND |- |A5||BITA IND,X||2||4||BIT TEST |- |A5 80||BITA IND,Y||2||4||BIT TEST |- |A6||LDAA IND,X||2||4||LOAD ACCUMULATOR |- |A6 80 ||LDAA IND,Y+||2||||LOAD ACCUMULATOR WITH/Y+ |- |A7||STAA IND,X||2||4||STORE ACCUMULATOR |- |A7 80||STAA IND,Y||2||||STORE ACCUMULATOR |- |A8||EORA IND,X||2||4||EXCLUSIVE OR |- |A8 80||EORA IND,Y||2||4||EXCLUSIVE OR |- |A9||ADCA IND,X||2||4||ADD WITH CARRY |- |A9 80||ADCA IND,Y||2||4||ADD WITH CARRY |- |AA||ORAA IND,X||2||4||INCLUSIVE OR |- |AA 80||ORAA IND,Y||2||4||INCLUSIVE OR |- |AB||ADDA IND,X||2||4||ADD WITHOUT CARRY |- |AB 80||ADDA IND,Y||2||4||ADD WITHOUT CARRY |- |AC||CPX IND,X||2||6||COMPARE INDEX REGISTER X |- |AC 80||CPX IND,Y||2||6||COMPARE INDEX REGISTER X |- |AD||JSR IND,X||2||6||JUMP TO SUBROUTINE |- |AD 80 ||JSR IND,Y||2||||JUMP TO SUBROUTINE |- |AE||LDS IND,X||2||5||LOAD STACK POINTER |- |AE 80||LDS IND,Y||2||5||LOAD STACK POINTER |- |AF||STS IND,X||2||5||STORE STACK POINTER |- |AF 80||STS IND,Y||2||5||STORE STACK POINTER |- |B0||SUBA EXT||3||4||SUBTRACT |- |B1||CMPA EXT||3||4||COMPARE |- |B2||SBCA EXT||3||4||SUBTRACT WITH CARRY |- |B3||SUBD EXT||3||6||SUBTRACT DOUBLE ACCUMULATOR |- |B4||ANDA EXT||3||4||LOGICAL AND |- |B5||BITA EXT||3||4||BIT TEST |- |B6||LDAA EXT||3||4||LOAD ACCUMULATOR |- |B7||STAA EXT||3||4||STORE ACCUMULATOR |- |B8||EORA EXT||3||4||EXCLUSIVE OR |- |B9||ADCA EXT||3||4||ADD WITH CARRY |- |BA||ORAA EXT||3||4||INCLUSIVE OR |- |BB||ADDA EXT||3||4||ADD WITHOUT CARRY |- |BC||CPX EXT||3||6||COMPARE INDEX REGISTER X |- |BD||JSR EXT||3||6||JUMP TO SUBROUTINE |- |BE||LDS EXT||3||5||LOAD STACK POINTER |- |BF||STS EXT||3||5||STORE STACK POINTER |- |C0||SUBB IMM||2||2||SUBTRACT |- |C1||CMPB IMM||2||2||COMPARE |- |C2||SBCB IMM||2||2||SUBTRACT WITH CARRY |- |C3||ADDD IMM||3||4||ADD DOUBLE ACCUMULATOR |- |C4||ANDB IMM||2||2||LOGICAL AND |- |C5||BITB IMM||2||2||BIT TEST |- |C6||LDAB IMM||2||2||LOAD ACCUMULATOR |- |C7||BRSET IND, X||4||||BRANCH IF BIT(S) SET |- |C8||EORB IMM||2||2||EXCLUSIVE OR |- |C9||ADCB IMM||2||2||ADD WITH CARRY |- |CA||ORAB IMM||2||2||INCLUSIVE OR |- |CB||ADDB IMM||2||2||ADD WITHOUT CARRY |- |CC||LDD IMM||3||3||LOAD DOUBLE ACCUMULATOR |- |CD 08||INY||2||4||INCREMENT INDEX REGISTER Y |- |CD 09||DEY||2||4||DECREMENT INDEX REGISTER Y |- |CD 1A||XGDY||2||||EXCHANGE DOUBLE ACCUMULATOR AND INDEX REG Y |- |CD 3A||ABY||2||||ADD ACCUMULATOR B TO INDEX REG Y |- |CD 8C ||CMPY IMM, Y++||4||||CMPY INDEX REGISTER Y AND INCREMENT. |- |CD A3||CPD IND,Y |- |CD AC||CPX IND,Y |- |CD CE||LDY IMM||4||4||LOAD INDEX REGISTER Y |- |CD DF||STY DIR||3||5||STORE INDEX REGISTER Y |- |CD EE||LDY IND,X||3||6||LOAD INDEX REGISTER Y |- |CD EF||STX IND,Y||3||6|| |- |CD FE||||4???? |- |CE||LDX IMM||3||3||LOAD INDEX REGISTER X |- |CF||*****||3||||?????(4!!!!!) |- |CF||STOP||1|||| |- |D0||SUBB DIR||2||3||SUBTRACT |- |D1||CMPB DIR||2||3||COMPARE |- |D2||SBCB DIR||2||3||SUBTRACT WITH CARRY |- |D3||ADDD DIR||2||5||ADD DOUBLE ACCUMULATOR |- |D4||ANDB DIR||2||3||LOGICAL AND |- |D5||BITB DIR||2||3||BIT TEST |- |D6||LDAB DIR||2||3||LOAD ACCUMULATOR |- |D7||STAB DIR||2||3||STORE ACCUMULATOR |- |D8||EORB DIR||2||3||EXCLUSIVE OR |- |D9||ADCB DIR||2||3||ADD WITH CARRY |- |DA||ORAB DIR||2||3||INCLUSIVE OR |- |DB||ADDB DIR||2||3||ADD WITHOUT CARRY |- |DC||LDD DIR||2||4||LOAD DOUBLE ACCUMULATOR |- |DD||STD DIR||2||4||STORE DOUBLE ACCUMULATOR |- |DE||LDX DIR||2||4||LOAD INDEX REGISTER X |- |DF||STX DIR||2||4||STORE INDEX REGISTER X |- |E0||SUBB IND,X||2||4||SUBTRACT |- |E0 80||SUBB IND,Y||2||4||SUBTRACT |- |E1 ||CMPB IND,X||2||4||COMPARE |- |E1 80||CMPB IND,Y||2||4||COMPARE |- |E2||SBCB IND,X||2||4||SUBTRACT WITH CARRY |- |E2 80||SBCB IND,Y||2||4||SUBTRACT WITH CARRY |- |E3||ADDD IND,X||2||6||ADD DOUBLE ACCUMULATOR |- |E3 80||ADDD IND,Y||2||6||ADD DOUBLE ACCUMULATOR |- |E4||ANDB IND,X||2||4||LOGICAL AND |- |E4 80||ANDB IND,Y||2||4||LOGICAL AND |- |E5||BITB IND,X||2||4||BIT TEST |- |E5 80||BITB IND,Y||2||4||BIT TEST |- |E6||LDAB IND,X||2||4||LOAD ACCUMULATOR |- |E6 80||LDAB IND,Y||2||4||LOAD ACCUMULATOR |- |E7||STAB IND,X||2||4||STORE ACCUMULATOR |- |E7 80||STAB IND,Y||2||4||STORE ACCUMULATOR |- |E8||EORB IND,X||2||4||EXCLUSIVE OR |- |E8 80||EORB IND,Y||2||4||EXCLUSIVE OR |- |E9||ADCB IND,X||2||4||ADD WITH CARRY |- |E9 80||ADCB IND,Y||2||4||ADD WITH CARRY |- |EA||ORAB IND,X||2||4||INCLUSIVE OR |- |EA 80||ORAB IND,Y||2||4||INCLUSIVE OR |- |EB||ADDB IND,X||2||4||ADD WITHOUT CARRY |- |EB 80||ADDB IND,Y||2||4||ADD WITHOUT CARRY |- |EC||LDD IND,X||2||5||LOAD DOUBLE ACCUMULATOR |- |EC 80||LDD IND,Y||2||5||LOAD DOUBLE ACCUMULATOR |- |ED||STD IND,X||2||5||STORE DOUBLE ACCUMULATOR |- |ED 80||STD IND,Y||2||5||STORE DOUBLE ACCUMULATOR |- |EE||LDX IND,X||2||5||LOAD INDEX REGISTER X |- |EE 80||LDX IND,Y++||2 ||5||LOAD INDEX REGISTER X WITH/Y++ |- |EF||STX IND,X||2||5||STORE INDEX REGISTER X |- |EF 80||STX IND,X||2||5||STORE INDEX REGISTER X |- |F0||SUBB EXT||3||4||SUBTRACT |- |F1||CMPB EXT||3||4||COMPARE |- |F2||SBCB EXT||3||4||SUBTRACT WITH CARRY |- |F3||ADDD EXT||3||6||ADD DOUBLE ACCUMULATOR |- |F4||ANDB EXT||3||4||LOGICAL AND |- |F5||BITB EXT||3||4||BIT TEST |- |F6||LDAB EXT||3||4||LOAD ACCUMULATOR |- |F7||STAB EXT||3||4||STORE ACCUMULATOR |- |F8||EORB EXT||3||4||EXCLUSIVE OR |- |F9||ADCB EXT||3||4||ADD WITH CARRY |- |FA||ORAB EXT||3||4||INCLUSIVE OR |- |FB||ADDB EXT||3||4||ADD WITHOUT CARRY |- |FC||LDD EXT||3||5||LOAD DOUBLE ACCUMULATOR |- |FD||STD EXT||3||5||STORE DOUBLE ACCUMULATOR |- |FE||LDX EXT||3||5||LOAD INDEX REGISTER X |- |FF||STX EXT||3||5||STORE INDEX REGISTER X |} ===Procs Docs Tossed=== * https://www.3si.org/threads/decoded-timing-maps-from-factory-ecu.193625/page-5#post-2383037 ===Related?=== * https://web.archive.org/web/*/http://www.16paws.com:80/ECU/* * https://web.archive.org/web/20140306212142/http://www.16paws.com/ECU/DASMxx/DASMx.htm *https://www.physicsforums.com/threads/ic-datsheet.67692/ ==Board parts== * https://www.icbreakout.com/products/plcc-68-breakout-board-24-23x24-23-mm-1-27-mm * https://www.adapt-plus.com/products_html/APW9327-ZC158.html * https://www.adapt-plus.com/resources/assets/images/pdf/catalogpdf_51ba069587b6f.pdf * https://ftyracing.com/product/1g-dsm-ecu-breakout-board/ * https://ftyracing.com/product/2g-dsm-evo8-ecu-breakout-board/ ===Chips=== ====ISC drivers==== * http://dsmlink.com/wiki/driver01 * https://www.u-obd.com/product/m5269l/ * https://www.alldatasheet.com/datasheet-pdf/pdf/936/MITSUBISHI/M5269L.html? ====MH6111 Processor==== * C$ 12.77 | 5piece MH6111-E827 MH6111 PLCC-68 In Stock * https://a.aliexpress.com/_mtLwCGD ==Standalones== ===AEM=== * https://www.jegs.com/InstallationInstructions/0/017/017-30-1300.pdf ===Megasquirt=== * https://www.diyautotune.com/support/tech/hardware/diypnp/available-models/#N52 ===Speeduino=== * https://wiki.speeduino.com/en/decoders/4G63 * https://wiki.speeduino.com/en/reference/ECU_Connectors#dsm-mitsubishi * https://wiki.speeduino.com/en/configuration/Idle#examples ===Link ECU (VR4LINK)=== * https://forums.linkecu.com/topic/9318-using-factory-knock-sensor-vr4link-dsm/ * https://www.aimshop.com/products/link-mitsubishi-vr4link-vr4x ===Haltech=== * https://www.tmzperformance.com/shop/haltech-elite-1500-dbw-ecu-with-mitsubishi-4g63-fully-terminated-harness-kit-suits-1g-cas-ev1-flying-lead-ignition-harness-ht-150930/ ==Pretty disassembly notes== ===GENERAL NOTES=== Project started with the help of dsm-ecu Yahoo group, thanks for the great info. Most disassembly comments in this file by Christian, [email protected]. ===CPU=== The microcomputer chip used in the 1G DSM ECU seems to be a custom application built around the <code>6801</code> architecture, Check the <code>6801, 6803, 6301, 68HC11</code> at web sites such as alldatasheet.com, etc. CPU clock frequency is assumed to be <code>2MHz</code>, i.e. the instructions cycle time is <code>0.5us</code>. ===Assembly binary verifications=== The 2 binaries produced without any customization ("<code>enableCustom</code>" definition is commented-out) have been verified to be identical to the <code>E931</code> and <code>E932</code> eprom images at hand. To check the validity of symbolic substitution, the entire code section and tables was offset by <code>$0200</code> using "<code>codeOffset</code>" and the corresponding binary was tested on my car (<code>E932</code>) without any problems for weeks. Additional tests were conducted by writing inline code in several part of the code and no adverse effect was ever noted. To check the validity of symbolic substitution for ram addresses, every ram location starting at <code>$0057</code> was offset by 1 (i.e. <code>temp1</code> was at memory address <code>$58</code> instead of <code>$57</code>, etc) and the corresponding binary was tested on my car (<code>E932</code>) without any problems during car startup and engine revving. No additional test performed. This means that the code can be modified inline and in most cases, ram memories can be moved around by changing the label addresses. Note however that some groups of ram memories have to be moved in blocks because the code assumes they are contiguous. e.g. the <code>temp1</code> to <code>temp9</code> variables, the <code>inj1_offT</code>, <code>inj3_offT</code>, <code>inj4_offT</code> and <code>inj2_offT</code> variables, etc. ===Ram memory=== Memory from <code>$0040</code> to <code>$01bf</code> is backed-up by battery, meaning it is preserved when the ECU is powered-off as long as battery power is supplied. However, memory from <code>$0057</code> to <code>$0190</code> is cleared to <code>0</code> by the code every time the ECU is powered-on. That can be however changed by modifying the code... Battery backup was checked by disabling memory reset using the <code>"noRamReset"</code> and then check ram memory at <code>$018f</code> to see if it gets preserved after power off/on cycle, and it did. During the test, <code>$018f</code> was used as a distance counter using the reed switch. ===Comments=== Some comments use variable names quite loosly. For instance, multi-byte variables such as <code>[airCnt0:airCnt1:airCnt2]</code> might be refered to as only <code>airCnt0</code>. <code>airCnt0</code> might therefore refer to the single byte <code>airCnt0</code>, to the 16 bit value <code>[airCnt0:airCnt1]</code> or to the 24 bit complete variable, depending on the context. Comments were added incrementally as my knowledge of code and variables increased. As new knowledge was learned, old comments were updated or corrected as much as possible but not necessarily all of them, so beware... In the end, the code is the only truth... Some small areas of the code were also never completly understood as a general understanding was reached and I did not care to go further e.g. airflow sensor active filter reset. ===Opcodes=== * <code>cmpd</code>: cmpd1 is used for some addressing modes instead of cmpd since TASM does not support unusual mitsubishi ECU cmpd opcodes.. * <code>brclr</code>: branch if ALL the given bits are clear * <code>brset</code>: branch if ANY of the given bits are set (as opposed to usual implementation of ALL bits set...) * The addressing mode using <code>Y</code> indexing also implicitly modifies the <code>y</code> register. It seems that <code>y</code> is increased by 1 or 2 depending whether the instruction is a 8 bit or 16 bits operation... The following cases are confirmed: <pre> cmpa $00,y -> y = y + 1 cmpb $00,y -> y = y + 1 ldaa $00,y -> y = y + 1 suba $00,y -> y = y + 1 ldx $00,y -> y = y + 2 std $00,y -> y = y + 2

Telemark assembler

This assembler does not provide warning messages when code assembles to the same memory space, e.g. you insert code in the middle of the file which result in the rest of the code to be offset by N bytes. This results in the interrupt vector table to be overwritten. No warning is given. The only way to know about it is to manually check the listing file produced by the assembler. Check that the buffer space between sections is all "$ff". Check that there is no code spilage over .org statements. Check that the address space does not exceed $ffff. Use the "codeOffset" at the beginnng of the file to correct the problem.

Fuel injector and coil power transistor control

Although the 4 fuel injectors and the 2 coil power transistors are mapped to regular ports (port1, port2 and port5) which can be read to know the current state of these outputs, they are also mapped in hardware to output compare registers in order to activate or deactivate them at specific time instants. Writing to the ports might therefore not work unless the output compare configuration registers are changed to disable harware control of these outputs. This might not be possible unless an "output enable" bit exists, which I haven't found at this point... Another way to activate or deactivate them would be to use the output compare registers (as currently done by the ECU code) and provoke an immediat output change.

Here is my current understanding of how injector scheduling works, not everything is clear to me so don't take this as gospel...:

The output compare registers for the fuel injectors seem to be at least double buffered and maybe triple buffered (see schedInjSim routine). That means that up to 3 different output compare values can be written to t1_outCmpWr and t2_outCmpWr to activate or deactivate the injectors at those time instants. Each time a value is written to t1_outCmpWr or t2_outCmpWr, the corresponding injector state is also internally stored. That means that to activate injector #1 at time X, you would first reset bit 0 of t1_csr, corresponding to injector #1 and then write X to t1_outCmpWr. You could then immediately schedule the deactivation of injector #1 by setting bit 0 of t1_csr to 1 and then write the deactivation time to t1_outCmpWr. When one of the output compare register stored value matches the clock at t1t2_clk, the injector is activated/deactivated and the corresponding interrupt routine is called (if the interrupt mask is clear...) at outCompInt1 or outCompInt2.

Here is my current understanding of how the coil power transistor scheduling works, not everything is clear to me so don't take this as gospel...: t3_outCmpWr is the output compare register used to activate or deactivate the coil power transistors (energize the coil and provoke ignition at the specified time instants) To energize the coil for cylinder 1 and 4 at time X you would write X to t3_outCmpWr and reset(0) bit 2 of t3_csr0. At time X, t3_csr0.2 would be loaded into port5.1 which would energize the coil. t3_csr0.2 should not be changed until that happens. In the code, most of the time 2 successive values (the same one) are written to t3_outCmpWr but there are some instances where only 1 value is written. My impression is that the first value serves to activate/deactivate the coil power transistor at the specified instant while the second one only serves to generate an interrupt in order to call the outCompInt3 routine. Hence when only the coil need to be activated/deactivated without calling outCompInt3, you would only write one value. If in addition you want to have outCompInt3 called when the coil is energized/ignited, you would write two successive values (corresponding to the same time...). This is all speculation of course... As for the 2 clocks at t3_clock1 and t3_clock1, I assume they are connected to the same internal clock at 250KHz but might be input capture registers latched when one of the two output compare at t3_outCmpWr is triggered??????? Again speculation, this is the part of the code I understand the least...

Timing diagram

  • 4 cylinders = 2 rotations = 2 * 360degrees = 720 degrees
  • For sequential injection, fuel injection starts on the cas falling edge
    • i.e. cylinder #1 injection starts at -5 BTDC of #3 TDC
  • Simultaneous injection of all 4 injectors is performed when starting to crank or starting a cold engine or during acceleration, check the tech manual and code for more details. Simultaneous injection starts on the 5deg BTDC cas signal except in the case of acceleration where it starts when an injector is deactivated and no other injector is active (i.e. at the beginning of the time period where no injector is active)
  • Coil energization is usually scheduled (the energization time is loaded into the output compare register, energization will occur at the specified time) from the cas rising edge. Coil ignition can be scheduled when energization occurs (output compare interrupt) or on the cas falling edge depending on the desired timing. Note however that coil energization can also be scheduled when ignition occurs on the preceeding cylinder. This would correspond to scheduling ignition before the cas rising edge (at high rpm I assume). Coil energization can also be scheduled on the cas falling edge when the desired timing is high (e.g. 10deg ATDC). As this shows, there are several combinations and the complexity of the code to handle the coil reflects that fact.
   
                        No 1 TDC         No 3 TDC          No 4 TDC          No 2 TDC
                           :                 :                 :                 :
                  ___________                         _____ 
TDC sensor       |           |                       |     |
signal           |         : |               :       |     |   :                 :
             ____|___________|_______________________|_____|________________________
degrees         85           55                      85   15
(BTDC/ATDC)                :                 :                 :                 :
                   ______            ______            ______            ______ 
CAS sensor        |      |          |      |          |      |          |      |
signal            |      | :        |      | :        |      | :        |      | :
             _____|______|__________|______|__________|______|__________|______|____
degrees           75     5 :       75      5 :       75      5 :        75     5 :
(BTDC)                     :                 :                 :                 :          
                           :                 :                 :                 : 
No 1 cyl.      compression :   combustion    :    exhaust      :     intake      : compression
No 3 cyl.        intake    :   compression   :   combustion    :     exhaust     :  intake     
No 4 cyl.        exhaust   :     intake      :   compression   :    combustion   :  exhaust    
No 2 cyl.      combustion  :     exhaust     :    intake       :    compression  : combustion

Airflow calculations dependencies, more details in code

  masProc: airflow sensor interrupt, increases [airCntNew0:airCntNew1] 
    |     by airQuantum for every airflow sensor pulse received
    |
    | 
    |
    |--> [airCntNew0:airCntNew1]: Increased by airQuantum for every airflow sensor pulse
             |                    Reset and used as input to [airCnt0:airCnt1:airCnt2]
             |                    on every cas falling edge, i.e. air is counted twice
             |                    per rotation, once for every cylinder cycle... It can 
             |                    therefore be seen as the air count per cylinder.
             |
             |--> [airCnt0:airCnt1:airCnt2]: Filtered version of 256*[airCntNew0:airCntNew1]
                        |                    exponential averaging is used.
                        |
                        |
                        |
                        |--> mafraw16: 16 bit airflow sensor pulse frequency (mafraw16/10.24)Hz
                        |       |      mafraw16 = 8205*[airCnt0:airCnt1]/Tcas
                        |       |
                        |       |
                        |       |--> mafraw: 8 bit airflow sensor pulse frequency (6.25*mafraw)Hz
                        |                    mafraw: = mafraw16/64
                        |
                        |
                        |
                        |--> airVol16: Equals [airCnt0:airCnt1] * masScalar/65536
                        |       |
                        |       |
                        |       |
                        |       |--> airVol   : Equals airVol16/2
                        |       |--> airVolT  : Equals airVol16/2 * iatCompFact/128
                        |       |--> airVolTB : Equals airVol16/2 * iatCompFact/128 * baroFact/128
                        |       |--> airVolB  : Equals airVol16/2 * baroFact/128
                        |
                        |
                        |--> injPw: Injector pulse width in "normal" operation, 
                                    injPw = [airCnt0:airCnt1] * injFactor/256  + other corrections

Discussion on MAS compensation factors

Total airflow sensor compensation is made-up of:

totMasComp(freq,iat,baro) = masComp + t_masComp(freq) + t_masLin(freq,iat,baro)

where maxComp is a fixed offset ($64 for 1G and $40 for 2G) and t_masComp and t_masLin are table values interpolated from frequency, intake air temperature and barometric pressure. t_masComp(freq) is basically compensation for the airflow sensor charcteristic curve as a function of frequency (to linearize the number of pulse per sec vs. the volume of air passing through the sensor) while t_masLin(freq,iat,baro) is a smaller factor probably compensating for temperature drift (electronic) and airflow characteristic change as a function of air density???

Assuming the following:

* injComp     = 100% (for 260cc injectors at 36psi)
* workFtrim   = 100%
* o2FuelAdj   = 100%
* iatCompFact = 100% (at 25.6degC)
* baroFact    = 100% (~1 bar)
* openLoopEnr = 100%
* coldTempEnr = 100%
* enrWarmup   = 0%

Then the injector pulswidth is calculated by the ECU as (excluding deadtime)

injPw(usec/cylinder) = numPulsePerCasInterrupts * $9c * totMasComp * 16/256
                     = numPulsePerCasInterrupts * totMasComp * 9.75

If we also assume a 14.7 air to fuel ratio, Dair=1.18 air density (g/litre) at 25degC, Dgas=0.775 fuel density (g/cc) then we would need 23900 usec of injection per litre of air using the same 260cc at 36psi, working that factor into the equation, we get

injPw(usec/cylinder) = numPulsePerCasInterrupts * totMasComp * 9.75
                     = numPulsePerCasInterrupts * totMasComp/2452 * 2452 * 9.75 
                     = numPulsePerCasInterrupts * totMasComp/2452 * 23900usecOfInjection/litreOfAir

This means that under the above assumptions, totMasComp/2452 has units of litreOfAirPerAirflowSensorPulse.

The factor 2452 is similar to the one provided by J. Oberholtzer, I think. The exact value must be somewhere in that range...

masScalar is also used for maf compensation ($5e86,24198 for 1G, $7A03,31235 for 2g) for controls other than fuel injection. It probably correspond to some metric of the totMasComp curve (average or max under given conditions). From 1G and 2G numbers, It could correspond to the max of the masComp + t_masComp(freq) curve multiplied by 0.808*128? It could also correspond to the masComp + t_masComp(freq) curve sampled at around 69Hz and multiplied by 128.

masScalar = maxTotMasComp*0.808*128 = totMasComp(69Hz)*128

We then have in the case of masScalar = maxTotMasComp*0.808*128:

airVol16 = numPulsePerCasInterrupts * $9c * masScalar / 65536
         = numPulsePerCasInterrupts * $9c * maxTotMasComp*0.808*128 / 65536
         = numPulsePerCasInterrupts * maxTotMasComp * 0.2462
         = numPulsePerCasInterrupts * maxTotMasComp/2452 * 2452*0.2462
         = numPulsePerCasInterrupts * maxTotMasComp/2452 * 603.68

since totMasComp/2452 is litreOfAirPerAirflowSensorPulse, we have

airVol16 = numPulsePerCasInterrupts * litreOfAirPerAirflowSensorPulse * 603.68

Using again 1.18g/litre air density we get

airVol16 = numPulsePerCasInterrupts * litreOfAirPerAirflowSensorPulse *1.18 * 603.68/1.18
         = numPulsePerCasInterrupts * gramsOfAirPerAirflowSensorPulse * 512
         = gramsOfAirPerCasInterrupts * 512

In that case, airVol16/512 can be seen has having units of gramsOfAirPerCasInterrupts (grams of air entering one cylinder). Note that the factor of 512 is not random, the factor 0.808 is used to get it in that case...

The load index values used to interpolate the fuel map is then

airVol16/2 <= 96
     
    loadIndex = (airVol16/2-32)/16 
              = (gramsOfAirPerCasInterrupts*512/2 -32)/16
              = gramsOfAirPerCasInterrupts*16-2
    
airVol16/2 >= 96
     
    loadIndex = gramsOfAirPerCasInterrupts * 512/2 * 0.668/16
              = gramsOfAirPerCasInterrupts*10.69

Which correspond to (gramsOfAirPerCasInterrupts for each index value)

  0      1      2       3       4       5       6      7       8       9       10     11
0.125  0.1875  0.25  0.3125  0.3750  0.4678  0.5614 0.6549  0.7485  0.8421  0.9356  1.0292

gramsOfAirPerRevolution would be twice those values. Notice that the max value of 1.0292 correspond to about 250HP when BSFC=0.55 which is in the range of the stock 1G 195HP...

Also notice that the 8 bit airflow airVol = airVol16/2 will saturate to $ff when airVol16/2 = 255 which correspond to gramsOfAirPerCasInterrupts = 1 gram. airVolT airVolTB and airVolB will also saturate in the same range...

We can now compare these results with the stock boost gauge. It has a max range of 1Kg per sq cm which equals 14.2 psi. The boost gauge duty cycle is given by

bGaugeODuty = t_bGauge(airVolT/32)/24

When maximum airVolT = 255 = iatCompFact*airVol16/2, bGaugeODuty = 20/24 = 0.83. At 25.6 degC, iatCompFact = 1.0 and therefore airVol16=510 which translates to 1g of air. boost gauge duty of 0.83 correspond to approx. 10.9psi (by eye...). Assuming a displacement of 0.5litre per cylinder and charge air density of 1.18 (25degC, probably too low for that psi range, unless you have a perfect intercooler..) we would get 1.18*0.5*(10.9+14.5)/14.5 = 1.03g of air per cylinder (cas interrupt). This is quite close to the 1.0g we had earlier.

The 0psi point on the gauge correspond to a duty cycle of about 40.5% which correspond to bGaugeODuty=9.75/24 which from t_bGauge correspond to airVolT/32=2.875 which means airVolT = 92. with iatCompFact = 1.0 @25degC, we get airVol16 = 2*airVolT/iatCompFact = 184 which correspond to 0.36grams of air Assuming a displacement of 0.5litre per cylinder and charge air density of 1.18@25degC we would get 1.18*0.5 = 0.59g of air per cylinder (cas interrupt) at 0psi. Compared to 0.36g we had earlier this is a large error but then there are several factor not taken onto account in the calculations, I suppose???.

Engine coolant and intake air temperature

Approximate sensor curves (temperature against ADC value, taken from MMCD). The control points in the service manual are quite close (0 to 2 degC off).

ADC ECT
degC
IAT ===== ADC ECT
degC
IAT ===== ADC ECT
degC
IAT ===== ADC ECT
degC
IAT
$00 158.0 184.0 $40 52.0 56.0 $80 21.0 23.0 $c0 -7.0 -7.0
$01 154.4 178.1 $41 51.3 55.3 $81 20.6 22.5 $c1 -7.5 -7.6
$02 150.9 172.5 $42 50.7 54.6 $82 20.2 22.1 $c2 -8.1 -8.2
$03 147.5 167.2 $43 50.1 53.9 $83 19.8 21.7 $c3 -8.6 -8.8
$04 144.2 162.0 $44 49.5 53.3 $84 19.4 21.2 $c4 -9.2 -9.4
$05 140.9 157.1 $45 48.9 52.6 $85 19.0 20.8 $c5 -9.8 -10.1
$06 137.7 152.4 $46 48.3 52.0 $86 18.7 20.4 $c6 -10.4 -10.7
$07 134.6 148.0 $47 47.7 51.3 $87 18.3 19.9 $c7 -10.9 -11.3
$08 131.6 143.7 $48 47.2 50.7 $88 17.9 19.5 $c8 -11.5 -12.0
$09 128.6 139.6 $49 46.6 50.1 $89 17.6 19.0 $c9 -12.1 -12.6
$0a 125.7 135.7 $4a 46.1 49.4 $8a 17.2 18.6 $ca -12.7 -13.2
$0b 122.9 132.0 $4b 45.6 48.8 $8b 16.9 18.2 $cb -13.2 -13.9
$0c 120.2 128.5 $4c 45.0 48.2 $8c 16.5 17.7 $cc -13.8 -14.5
$0d 117.5 125.1 $4d 44.5 47.7 $8d 16.1 17.3 $cd -14.3 -15.1
$0e 114.9 121.9 $4e 44.0 47.1 $8e 15.7 16.8 $ce -14.9 -
$0f 112.4 118.8 $4f 43.5 46.5 $8f 15.3 16.4 $cf -15.4 -16.3
$10 110.0 116.0 $50 43.0 46.0 $90 15.0 16.0 $d0 -16.0 -17.0
$11 107.6 113.2 $51 42.4 45.4 $91 14.5 15.5 $d1 -16.5 -17.6
$12 105.3 110.6 $52 41.9 44.9 $92 14.1 15.1 $d2 -17.0 -18.2
$13 103.0 108.1 $53 41.4 44.3 $93 13.7 14.6 $d3 -17.5 -18.8
$14 100.8 105.8 $54 40.9 43.8 $94 13.3 14.2 $d4 -18.0 -19.4
$15 98.7 103.5 $55 40.4 43.3 $95 12.9 13.7 $d5 -18.6 -20.1
$16 96.7 101.4 $56 39.9 42.8 $96 12.4 13.3 $d6 -19.2 -20.8
$17 94.7 99.4 $57 39.3 42.3 $97 12.0 12.8 $d7 -19.8 -21.5
$18 92.8 97.5 $58 38.8 41.8 $98 11.5 12.4 $d8 -20.5 -22.3
$19 91.0 95.7 $59 38.3 41.4 $99 11.1 12.0 $d9 -21.3 -23.1
$1a 89.2 93.9 $5a 37.8 40.9 $9a 10.6 11.5 $da -22.1 -24.0
$1b 87.5 92.3 $5b 37.3 40.4 $9b 10.2 11.1 $db -23.0 -24.9
$1c 85.9 90.7 $5c 36.9 39.9 $9c 9.7 10.7 $dc -24.0 -26.0
$1d 84.3 89.2 $5d 36.4 39.4 $9d 9.3 10.2 $dd -25.0 -27.1
$1e 82.8 87.7 $5e 35.9 38.9 $9e 8.8 9.8 $de -26.2 -28.3
$1f 81.3 86.3 $5f 35.4 38.4 $9f 8.4 9.4 $df -27.5 -29.6
$20 80.0 85.0 $60 35.0 38.0 $a0 8.0 9.0 $e0 -29.0 -31.0
$21 78.6 83.6 $61 34.5 37.5 $a1 7.5 8.5 $e1 -30.5 -32.5
$22 77.4 82.4 $62 34.0 37.0 $a2 7.1 8.1 $e2 -32.2 -34.1
$23 76.2 81.1 $63 33.6 36.4 $a3 6.6 7.7 $e3 -33.9 -35.7
$24 75.0 79.9 $64 33.1 35.9 $a4 6.2 7.3 $e4 -35.8 -37.5
$25 73.9 78.8 $65 32.7 35.4 $a5 5.8 6.9 $e5 -37.7 -39.3
$26 72.9 77.7 $66 32.3 34.9 $a6 5.3 6.4 $e6 -39.7 -41.2
$27 71.9 76.6 $67 31.8 34.4 $a7 4.9 6.0 $e7 -41.7 -43.0
$28 70.9 75.5 $68 31.4 33.9 $a8 4.5 5.6 $e8 -43.7 -44.9
$29 69.9 74.5 $69 31.0 33.4 $a9 4.0 5.2 $e9 -45.8 -46.8
$2a 69.0 73.5 $6a 30.5 32.9 $aa 3.6 4.7 $ea -47.8 -48.7
$2b 68.1 72.5 $6b 30.1 32.4 $ab 3.2 4.3 $eb -49.8 -50.6
$2c 67.3 71.5 $6c 29.7 31.9 $ac 2.7 3.8 $ec -51.8 -52.4
$2d 66.4 70.6 $6d 29.3 31.4 $ad 2.3 3.4 $ed -53.7 -54.1
$2e 65.6 69.7 $6e 28.8 30.9 $ae 1.8 2.9 $ee -55.5 -55.8
$2f 64.8 68.8 $6f 28.4 30.4 $af 1.4 2.4 $ef -57.3 -57.4
$30 64.0 68.0 $70 28.0 30.0 $b0 1.0 2.0 $f0 -59.0 -59.0
$31 63.1 67.1 $71 27.5 29.5 $b1 0.5 1.5 $f1 -59.0 -59.0
$32 62.3 66.3 $72 27.1 29.0 $b2 0.0 0.9 $f2 -59.0 -59.0
$33 61.5 65.5 $73 26.6 28.6 $b3 -0.3 0.4 $f3 -59.0 -59.0
$34 60.7 64.7 $74 26.2 28.1 $b4 -0.8 -0.0 $f4 -59.0 -59.0
$35 59.9 63.9 $75 25.7 27.7 $b5 -1.3 -0.5 $f5 -59.0 -59.0
$36 59.2 63.1 $76 25.3 27.2 $b6 -1.8 -1.1 $f6 -59.0 -59.0
$37 58.4 62.3 $77 24.8 26.8 $b7 -2.3 -1.6 $f7 -59.0 -59.0
$38 57.6 61.6 $78 24.4 26.4 $b8 -2.8 -2.2 $f8 -59.0 -59.0
$39 56.9 60.9 $79 23.9 25.9 $b9 -3.3 -2.8 $f9 -59.0 -59.0
$3a 56.1 60.1 $7a 23.5 25.5 $ba -3.8 -3.3 $fa -59.0 -59.0
$3b 55.4 59.4 $7b 23.0 25.1 $bb -4.3 -3.9 $fb -59.0 -59.0
$3c 54.7 58.7 $7c 22.6 24.7 $bc -4.8 -4.5 $fc -59.0 -59.0
$3d 54.0 58.0 $7d 22.2 24.2 $bd -5.3 -5.1 $fd -59.0 -59.0
$3e 53.3 57.3 $7e 21.8 23.8 $be -5.9 -5.7 $fe -59.0 -59.0
$3f 52.6 56.6 $7f 21.4 23.4 $bf -6.4 -6.3 $ff -59.0 -59.0